인공지능/R
R - 데이터 분석 프로젝트
bibibig_data
2021. 6. 8. 17:06
# 9장 '한국복지패널데이터' 분석 준비하기 209p
install.packages("foreign")
library(foreign) # spss 파일 불러오기
library(dplyr) # 전처리
library(ggplot2) # 시각화
library(readxl) # 엑셀파일불러오기
#데이터 불러오기
raw_welfare <- read.spss(file="D:/rclass/Koweps_hpc10_2015_beta1.sav",
to.data.frame = T)
#복사본 만들기
welfare <- raw_welfare
#데이터 검토하기
head(welfare)
tail(welfare)
View(welfare)
dim(welfare)
str(welfare)
summary(welfare)
# 변수명 바꾸기
welfare <- rename(welfare,
sex = h10_g3, # 성별
birth = h10_g4, # 태어난 연도
marriage = h10_g10, # 혼인상태
religion = h10_g11, # 종교
income = p1002_8aq1, # 월급
code_job = h10_eco9, # 직업코드
code_region = h10_reg7) # 지역코드
head(welfare)
# 성별에 따른 월급 차이 _ " 성별에 따라 월급이 다를까? "
class(welfare$sex) # 변수의 타입 확인
table(welfare$sex)
# 이상치 확인
table(welfare$sex)
#이상치 결측 처리
welfare$sex <- ifelse(welfare$sex == 9, NA, welfare$sex)
# 결측치 확인
table(is.na(welfare$sex))
#성별 항목 이름 부여
welfare$sex <- ifelse(welfare$sex == 1 , "male", "female")
table(welfare$sex)
qplot(welfare$sex) # 빈도 확인
# 월급 변수 검토
class(welfare$income)
summary(welfare$income)
qplot(welfare$income)
qplot(welfare$income) + xlim(0, 1000)
# 이상치 확인
summary(welfare$income)
# 이상치가 9999라고 되어있고, 1~9998 사이의 값을 갖는다고 되어있는데,
# 최솟값이 0인걸보면 0도 결측치로 처리해야한다는 것을 알 수 있다.
# 이상치 결측 처리
welfare$income <- ifelse(welfare$income %in% c(0,9999), NA, welfare$income)
# 결측치 확인
table(is.na(welfare$income))
# 성별 월급 평균표 만들기
sex_income <- welfare %>%
filter(!is.na(income)) %>%
group_by(sex) %>%
summarise(mean_income = mean(income))
# 그래프 만들기
ggplot(data = sex_income, aes(x=sex, y=mean_income)) + geom_col()
#### 09-3 ####
## ---------------------------------------------------------- ##
#변수 검토하기
class(welfare$birth)
summary(welfare$birth)
qplot(welfare$birth)
# 전처리
summary(welfare$birth) # 이상치 확인
table(is.na(welfare$birth)) # 결측치 확인
welfare$birth <- ifelse(welfare$birth == 9999, NA, welfare$birth)
table(is.na(welfare$birth)) # 이상치 결측 처리
## ----------------------------------------------------------- ##
welfare$age <- 2015 - welfare$birth + 1 # 파생변수 만들기 - 나이
summary(welfare$age)
qplot(welfare$age)
## ----------------------------------------------------------- ##
# 나이에 따른 월급 평균표 만들기
age_income <- welfare %>%
filter(!is.na(income)) %>%
group_by(age) %>%
summarise(mean_income = mean(income)) # 나이별 평균 표 생성
head(age_income)
# x축은 나이, y축은 평균표로 설정 한 선그래프 생성
ggplot(data = age_income, aes(x = age, y = mean_income)) + geom_line()
#### 09-4 ####
## -------------------------------------------------------------------- ##
welfare <- welfare %>%
mutate(ageg = ifelse(age < 30, "young",
ifelse(age <= 59, "middle", "old")))
table(welfare$ageg)
qplot(welfare$ageg)
## -------------------------------------------------------------------- ##
ageg_income <- welfare %>%
filter(!is.na(income)) %>%
group_by(ageg) %>%
summarise(mean_income = mean(income))
ageg_income
ggplot(data = ageg_income, aes(x = ageg, y = mean_income)) + geom_col()
## -------------------------------------------------------------------- ##
ggplot(data = ageg_income, aes(x = ageg, y = mean_income)) +
geom_col() +
scale_x_discrete(limits = c("young", "middle", "old"))
#### 09-5 ####
## -------------------------------------------------------------------- ##
sex_income <- welfare %>%
filter(!is.na(income)) %>%
group_by(ageg, sex) %>%
summarise(mean_income = mean(income))
sex_income
ggplot(data = sex_income, aes(x = ageg, y = mean_income, fill = sex)) +
geom_col() +
scale_x_discrete(limits = c("young", "middle", "old"))
ggplot(data = sex_income, aes(x = ageg, y = mean_income, fill = sex)) +
geom_col(position = "dodge") +
scale_x_discrete(limits = c("young", "middle", "old"))
## -------------------------------------------------------------------- ##
# 성별 연령별 월급 평균표 만들기
sex_age <- welfare %>%
filter(!is.na(income)) %>%
group_by(age, sex) %>%
summarise(mean_income = mean(income))
head(sex_age)
# 그래프 만들기
ggplot(data = sex_age, aes(x = age, y = mean_income, col = sex)) + geom_line()
#### 09-6 ####
## -------------------------------------------------------------------- ##
class(welfare$code_job)
table(welfare$code_job)
library(readxl)
list_job <- read_excel("Koweps_Codebook.xlsx", col_names = T, sheet = 2)
head(list_job)
dim(list_job)
welfare <- left_join(welfare, list_job, id = "code_job")
welfare %>%
filter(!is.na(code_job)) %>%
select(code_job, job) %>%
head(10)
## --------------------------------------------------------- ##
job_income <- welfare %>%
filter(!is.na(job) & !is.na(income)) %>%
group_by(job) %>%
summarise(mean_income = mean(income))
head(job_income)
top10 <- job_income %>%
arrange(desc(mean_income)) %>%
head(10)
top10
ggplot(data = top10, aes(x = reorder(job, mean_income), y = mean_income)) +
geom_col() +
coord_flip()
# 하위 10위 추출
bottom10 <- job_income %>%
arrange(mean_income) %>%
head(10)
bottom10
# 그래프 만들기
ggplot(data = bottom10, aes(x = reorder(job, -mean_income),
y = mean_income)) +
geom_col() +
coord_flip() +
ylim(0, 850)
#### 09-7 ####
## ------------------------------------------------------ ##
# 남성 직업 빈도 상위 10개 추출
job_male <- welfare %>%
filter(!is.na(job) & sex == "male") %>%
group_by(job) %>%
summarise(n = n()) %>%
arrange(desc(n)) %>%
head(10)
job_male
# 여성 직업 빈도 상위 10개 추출
job_female <- welfare %>%
filter(!is.na(job) & sex == "female") %>%
group_by(job) %>%
summarise(n = n()) %>%
arrange(desc(n)) %>%
head(10)
job_female
# 남성 직업 빈도 상위 10개 직업
ggplot(data = job_male, aes(x = reorder(job, n), y = n)) +
geom_col() +
coord_flip()
# 여성 직업 빈도 상위 10개 직업
ggplot(data = job_female, aes(x = reorder(job, n), y = n)) +
geom_col() +
coord_flip()
#### 09-8 ####
## -------------------------------------------------------- ##
class(welfare$religion)
table(welfare$religion)
# 종교 유무 이름 부여
welfare$religion <- ifelse(welfare$religion == 1, "yes", "no")
table(welfare$religion)
qplot(welfare$religion)
## ---------------------------------------------------------- ##
class(welfare$marriage)
table(welfare$marriage)
# 이혼 여부 변수 만들기
welfare$group_marriage <- ifelse(welfare$marriage == 1, "marriage",
ifelse(welfare$marriage == 3, "divorce", NA))
table(welfare$group_marriage)
table(is.na(welfare$group_marriage))
qplot(welfare$group_marriage)
## -------------------------------------------------------- ##
religion_marriage <- welfare %>%
filter(!is.na(group_marriage)) %>%
group_by(religion, group_marriage) %>%
summarise(n = n()) %>%
mutate(tot_group = sum(n)) %>%
mutate(pct = round(n/tot_group*100, 1))
religion_marriage
religion_marriage <- welfare %>%
filter(!is.na(group_marriage)) %>%
count(religion, group_marriage) %>%
group_by(religion) %>%
mutate(pct = round(n/sum(n)*100, 1))
# 이혼 추출
divorce <- religion_marriage %>%
filter(group_marriage == "divorce") %>%
select(religion, pct)
divorce
ggplot(data = divorce, aes(x = religion, y = pct)) + geom_col()
## ----------------------------------------------------------- ##
ageg_marriage <- welfare %>%
filter(!is.na(group_marriage)) %>%
group_by(ageg, group_marriage) %>%
summarise(n = n()) %>%
mutate(tot_group = sum(n)) %>%
mutate(pct = round(n/tot_group*100, 1))
ageg_marriage
ageg_marriage <- welfare %>%
filter(!is.na(group_marriage)) %>%
count(ageg, group_marriage) %>%
group_by(ageg) %>%
mutate(pct = round(n/sum(n)*100, 1))
# 초년 제외, 이혼 추출
ageg_divorce <- ageg_marriage %>%
filter(ageg != "young" & group_marriage == "divorce") %>%
select(ageg, pct)
ageg_divorce
# 그래프 만들기
ggplot(data = ageg_divorce, aes(x = ageg, y = pct)) + geom_col()
## ----------------------------------------------------------- ##
# 연령대, 종교유무, 결혼상태별 비율표 만들기
ageg_religion_marriage <- welfare %>%
filter(!is.na(group_marriage) & ageg != "young") %>%
group_by(ageg, religion, group_marriage) %>%
summarise(n = n()) %>%
mutate(tot_group = sum(n)) %>%
mutate(pct = round(n/tot_group*100, 1))
ageg_religion_marriage
ageg_religion_marriage <- welfare %>%
filter(!is.na(group_marriage) & ageg != "young") %>%
count(ageg, religion, group_marriage) %>%
group_by(ageg, religion) %>%
mutate(pct = round(n/sum(n)*100, 1))
# 연령대 및 종교 유무별 이혼율 표 만들기
df_divorce <- ageg_religion_marriage %>%
filter(group_marriage == "divorce") %>%
select(ageg, religion, pct)
df_divorce
ggplot(data = df_divorce, aes(x = ageg, y = pct, fill = religion )) +
geom_col(position = "dodge")
#### 09-9 ####
## ------------------------------------------------------------ ##
class(welfare$code_region)
table(welfare$code_region)
# 지역 코드 목록 만들기
list_region <- data.frame(code_region = c(1:7),
region = c("서울",
"수도권(인천/경기)",
"부산/경남/울산",
"대구/경북",
"대전/충남",
"강원/충북",
"광주/전남/전북/제주도"))
list_region
# 지역명 변수 추가
welfare <- left_join(welfare, list_region, id = "code_region")
welfare %>%
select(code_region, region) %>%
head
## --------------------------------------------------------- ##
region_ageg <- welfare %>%
group_by(region, ageg) %>%
summarise(n = n()) %>%
mutate(tot_group = sum(n)) %>%
mutate(pct = round(n/tot_group*100, 2))
head(region_ageg)
region_ageg <- welfare %>%
count(region, ageg) %>%
group_by(region) %>%
mutate(pct = round(n/sum(n)*100, 2))
ggplot(data = region_ageg, aes(x = region, y = pct, fill = ageg)) +
geom_col() +
coord_flip()
## -------------------------------------------------------- ##
# 노년층 비율 내림차순 정렬
list_order_old <- region_ageg %>%
filter(ageg == "old") %>%
arrange(pct)
list_order_old
# 지역명 순서 변수 만들기
order <- list_order_old$region
order
ggplot(data = region_ageg, aes(x = region, y = pct, fill = ageg)) +
geom_col() +
coord_flip() +
scale_x_discrete(limits = order)
class(region_ageg$ageg)
levels(region_ageg$ageg)
region_ageg$ageg <- factor(region_ageg$ageg,
level = c("old", "middle", "young"))
class(region_ageg$ageg)
levels(region_ageg$ageg)
ggplot(data = region_ageg, aes(x = region, y = pct, fill = ageg)) +
geom_col() +
coord_flip() +
scale_x_discrete(limits = order)