=====================================================
sklearn.model_selection: Model Selection
=====================================================
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.model_selection
- Splitter Classes -> sklearn.model_selection.KFold
-> sklearn.model_selection.StratifiedKFold = 층화샘플추출
- Splitter Functions -> sklearn.model_selection.train_test_split =
- Hyper-parameter optimizers -> sklearn.model_selection.GridSearchCV
sklearn.model_selection.RandomizedSearchCV
- Model validation -> sklearn.model_selection.cross_validate
-> sklearn.model_selection.cross_val_score
DecisionTreeClassifier() 패키지 설명
- criterion : 분할 품질을 측정하는 기능 (default : gini)
- splitter : 각 노드에서 분할을 선택하는 데 사용되는 전략 (default : best)
- max_depth : 트리의 최대 깊이 (값이 클수록 모델의 복잡도가 올라간다.)
- min_samples_split : 자식 노드를 분할하는데 필요한 최소 샘플 수 (default : 2)
- min_samples_leaf : 리프 노드에 있어야 할 최소 샘플 수 (default : 1)
- min_weight_fraction_leaf : min_sample_leaf와 같지만 가중치가 부여된 샘플 수에서의 비율
- max_features : 각 노드에서 분할에 사용할 특징의 최대 수
- random_state : 난수 seed 설정
- max_leaf_nodes : 리프 노드의 최대수
- min_impurity_decrease : 최소 불순도
- min_impurity_split : 나무 성장을 멈추기 위한 임계치
- class_weight : 클래스 가중치
- presort : 데이터 정렬 필요 여부
Model Selection 예제
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
# (1) 학습 데이터 세트로만 fitting and predicting
iris = load_iris()
dt_clf = DecisionTreeClassifier()
train_data = iris.data
train_label = iris.target
dt_clf.fit(train_data, train_label) # 학습
# 학습 데이터 셋으로 예측 수행
pred = dt_clf.predict(train_data) # 같은 데이터를 넣음
print('예측 정확도:', accuracy_score(train_label, pred)) # 예측 하면 당연히 정확도가 1
# (2) 데이터 세트를 나누어서 fitting and predicting
from sklearn.model_selection import train_test_split
iris_data = load_iris()
dt_clf = DecisionTreeClassifier( )
X_train, X_test, y_train, y_test = train_test_split(iris_data.data, iris_data.target,
test_size=0.3, random_state=121) # 7:3으로 트레이닝 테스트 나누기
dt_clf.fit(X_train, y_train)
pred = dt_clf.predict(X_test)
print('예측 정확도: {0:.4f}'.format(accuracy_score(y_test, pred))) # 예측 -> 95%
# (3) K-Folds cross-validator
from sklearn.model_selection import KFold
import numpy as np
iris = load_iris()
features = iris.data
label = iris.target
dt_clf = DecisionTreeClassifier(random_state=156) #랜덤값을 빼고 진행하면 실행할 때 마다 값이 바뀜
# 이게 있으면 항사 같은 값 출력
# 5개의 폴드 세트로 분리하는 KFold 객체와 폴드 세트별 정확도를 담을 리스트 객체 생성.
kfold = KFold(n_splits=5) # 데이터를 5등분
cv_accuracy = [] # 빈 리스트 만들기
print('붓꽃 데이터 세트 크기:',features.shape[0])
n_iter = 0 # 반복하는 숫자 기록하기 위해서
# KFold객체의 split( ) 호출하면 폴드 별 학습용, 검증용 테스트의 로우 인덱스를 array로 반환
for train_index, test_index in kfold.split(features): # 4개의 feature와 150개의 sample을 가진 데이터를 split
# kfold.split( )으로 반환된 인덱스를 이용하여 학습용, 검증용 테스트 데이터 추출
X_train, X_test = features[train_index], features[test_index] # 80% 추출
y_train, y_test = label[train_index], label[test_index] #20% 추출
#학습 및 예측
dt_clf.fit(X_train , y_train)
pred = dt_clf.predict(X_test)
n_iter += 1
# 반복 시 마다 정확도 측정
accuracy = np.round(accuracy_score(y_test, pred), 4) # 정확도 구하기 근데 소수점이 너무 길어서 반올림
train_size = X_train.shape[0]
test_size = X_test.shape[0]
print('\n#{0} 교차 검증 정확도 :{1}, 학습 데이터 크기: {2}, 검증 데이터 크기: {3}'
.format(n_iter, accuracy, train_size, test_size))
print('#{0} 검증 세트 인덱스:{1}'.format(n_iter,test_index))
cv_accuracy.append(accuracy) # 각각의 정확도
# 개별 iteration별 정확도를 합하여 평균 정확도 계산
print('\n## 평균 검증 정확도:', np.mean(cv_accuracy)) # 각각 정확도의 평균
# (4) Stratified K-Folds cross-validator
# 4-1 KFold 사용할 경우
import pandas as pd
iris = load_iris()
iris_df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
iris_df['label']=iris.target
iris_df['label'].value_counts()
kfold = KFold(n_splits=3)
# kfold.split(X)는 폴드 세트를 5번 반복할 때마다 달라지는 학습/테스트 용 데이터 로우 인덱스 번호 반환.
n_iter =0
for train_index, test_index in kfold.split(iris_df):
n_iter += 1
label_train= iris_df['label'].iloc[train_index]
label_test= iris_df['label'].iloc[test_index]
print('## 교차 검증: {0}'.format(n_iter))
print('학습 레이블 데이터 분포:\n', label_train.value_counts())
print('검증 레이블 데이터 분포:\n', label_test.value_counts())
# 4-2 StratifiedKFold 사용할 경우
from sklearn.model_selection import StratifiedKFold
skf = StratifiedKFold(n_splits=3)
n_iter=0
for train_index, test_index in skf.split(iris_df, iris_df['label']):
n_iter += 1
label_train= iris_df['label'].iloc[train_index]
label_test= iris_df['label'].iloc[test_index]
print('## 교차 검증: {0}'.format(n_iter))
print('학습 레이블 데이터 분포:\n', label_train.value_counts())
print('검증 레이블 데이터 분포:\n', label_test.value_counts())
dt_clf = DecisionTreeClassifier(random_state=156)
skfold = StratifiedKFold(n_splits=3)
n_iter=0
cv_accuracy=[]
# StratifiedKFold의 split( ) 호출시 반드시 레이블 데이터 셋도 추가 입력 필요
for train_index, test_index in skfold.split(features, label):
# split( )으로 반환된 인덱스를 이용하여 학습용, 검증용 테스트 데이터 추출
X_train, X_test = features[train_index], features[test_index]
y_train, y_test = label[train_index], label[test_index]
#학습 및 예측
dt_clf.fit(X_train , y_train)
pred = dt_clf.predict(X_test)
# 반복 시 마다 정확도 측정
n_iter += 1
accuracy = np.round(accuracy_score(y_test,pred), 4)
train_size = X_train.shape[0]
test_size = X_test.shape[0]
print('\n#{0} 교차 검증 정확도 :{1}, 학습 데이터 크기: {2}, 검증 데이터 크기: {3}'
.format(n_iter, accuracy, train_size, test_size))
print('#{0} 검증 세트 인덱스:{1}'.format(n_iter,test_index))
cv_accuracy.append(accuracy)
# 교차 검증별 정확도 및 평균 정확도 계산
print('\n## 교차 검증별 정확도:', np.round(cv_accuracy, 4))
print('## 평균 검증 정확도:', np.mean(cv_accuracy))
# (5) Evaluate a score by cross-validation
from sklearn.model_selection import cross_val_score , cross_validate
iris_data = load_iris()
dt_clf = DecisionTreeClassifier(random_state=156)
data = iris_data.data
label = iris_data.target
# 성능 지표는 정확도(accuracy) , 교차 검증 세트는 3개
scores = cross_val_score(dt_clf , data , label , scoring='accuracy',cv=3) # cv = 3등분 한다 .
print('교차 검증별 정확도:',np.round(scores, 4))
print('평균 검증 정확도:', np.round(np.mean(scores), 4))
# (6) Exhaustive search over specified Hyper-parameter values for an estimator.
from sklearn.model_selection import GridSearchCV
# 데이터를 로딩하고 학습데이타와 테스트 데이터 분리
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris_data.data, iris_data.target,
test_size=0.2, random_state=121)
dtree = DecisionTreeClassifier()
### parameter 들을 dictionary 형태로 설정
parameters = {'max_depth':[1,2,3], 'min_samples_split':[2,3]}
import pandas as pd
# param_grid의 하이퍼 파라미터들을 3개의 train, test set fold 로 나누어서 테스트 수행 설정.
### refit=True 가 default 임. True이면 가장 좋은 파라미터 설정으로 재 학습 시킴.
grid_dtree = GridSearchCV(dtree, param_grid=parameters, cv=3, refit=True)
# 붓꽃 Train 데이터로 param_grid의 하이퍼 파라미터들을 순차적으로 학습/평가 .
grid_dtree.fit(X_train, y_train)
# GridSearchCV 결과 추출하여 DataFrame으로 변환
scores_df = pd.DataFrame(grid_dtree.cv_results_)
scores_df[['params', 'mean_test_score', 'rank_test_score', \
'split0_test_score', 'split1_test_score', 'split2_test_score']]
print('GridSearchCV 최적 파라미터:', grid_dtree.best_params_) # GridSearchCV는 있는 경우의 수를 다 해보는 것
print('GridSearchCV 최고 정확도: {0:.4f}'.format(grid_dtree.best_score_))
# GridSearchCV의 refit으로 이미 학습이 된 estimator 반환
estimator = grid_dtree.best_estimator_
# GridSearchCV의 best_estimator_는 이미 최적 하이퍼 파라미터로 학습이 됨
pred = estimator.predict(X_test)
print('테스트 데이터 세트 정확도: {0:.4f}'.format(accuracy_score(y_test,pred)))
'인공지능 > 머신러닝' 카테고리의 다른 글
데이터 전처리, 릿지, 라쏘, 선형회귀,SST (0) | 2021.07.09 |
---|---|
사이킷런으로 수행하는 타이타닉 생존자 예측 (0) | 2021.07.08 |
Scikit-Learn (0) | 2021.07.08 |
Sclkit - Learn을 이용 군집 (0) | 2021.07.07 |
툴 사용법 ( 이클립스, 주피터, 코랩, 아톰 ) (0) | 2021.07.06 |